深度迁移学习算法的实现与比较文献综述

 2023-08-14 15:17:35

文献综述(或调研报告):

随着社会发展的信息化和网络化,人们在日常生活和工作中无时无刻不在获取信息,分析信息,并以此作为决策的依据。在一定程度上,信息的拥有量已经成为决定和制约人类社会发展的重要因素。想要高效、准确地寻找到所需的信息,信息分类是必不可少的第一步。通过分类,信息可以得到有效的组织管理。有利于快速、准确地定位信息。分类学习问题,是机器学习中一种重要的学习方法,目前已经得到广泛的研究与发展。

迁移学习,顾名思义,就是要进行迁移。放到我们人工智能和机器学习的学科里讲,迁移学习是一种学习的思想和模式。

我们都对机器学习有了基本的了解。机器学习是人工智能的一大类重要方法,也是目前发展最迅速、效果最显著的方法。机器学习解决的是让机器自主地从数据中获取知识,从而应用于新的问题中。迁移学习作为机器学习的一个重要分支,侧重于将已经学习过的知识迁移应用于新的问题中。

迁移学习的核心问题是,找到新问题和原问题之间的相似性,才可以顺利地实现知识的迁移。比如在我们一开始说的天气问题中,那些北半球的天气之所以相似,是因为它们的地理位置相似;而南北半球的天气之所以有差异,也是因为地理位置有根本不同。

其实我们人类对于迁移学习这种能力,是与生俱来的。比如,我们如果已经会打乒乓球,就可以类比着学习打网球。再比如,我们如果已经会下中国象棋,就可以类比着下国际象棋。因为这些活动之间,往往有着极高的相似性。生活中常用的“举一反三”、“照猫画虎”就很好地体现了迁移学习的思想。

回到我们的问题中来。我们用更加学术更加机器学习的语言来对迁移学习下一个定义。迁移学习,是指利用数据、任务、或模型之间的相似性,将在旧领域学习过的模型,应用于新领域的一种学习过程[1]。

了解了迁移学习的概念之后,紧接着还有一个非常重要的问题:迁移学习的目的是什么? 或者说,为什么要用迁移学习?

我们把原因概括为以下四个方面:

  1. 大数据与少标注之间的矛盾

我们正处在一个大数据时代,每天每时,社交网络、智能交通、视频监控、行业物流等,都产生着海量的图像、文本、语音等各类数据。数据的增多,使得机器学习和深度学习模型可以依赖于海量的数据,持续不断地训练和更新相应的模型,使得模型的性能越来越好,越来越适合特定场景的应用。然而,这些大数据带来了严重的问题:总是缺乏完善的数据标注。

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

课题毕业论文、文献综述、任务书、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。